OpenVMS hypervised

as-is

artedi e.U.
Agenda – I

• so what …is Hypervision ?
• and why is it needed/used ?
• Types of Hypervision
• why not OpenVMS ?
• Processor Architectures
Agenda - II

• what else ...is needed ?
• Emulation, bringing things together
• Types of Emulators
• who does it for VAX and Alpha (VMS)?
• Example, more detailed
• Life Demo
Hypervise, divide and conquer

- hyper ... ancient greek for 'over'
- videre ... latin word for 'to see'
- Hyper+visor ... the 'overseer' / surveillant
- controlled distribution by Monitor Machines → VMMs
Reasons for hypervision

• Money → optimized use of HW expenses made
• Resources → optimized use of HW infrastructure
• Hardware evolves rapidly → miniaturization
• Clock rates stall → rejected heat
• Parallelism has its limits → synchronisation issues
General Models

• Divide in Groups (Virtual Systems → OSes)
 • which use their own groups (Processors/Interfaces)

• Two types of Hypervisors/VMMs
 • Type-1 native or Bare Metal
 • Type-2 hosted
Hypervisor, Type-1 Bare Metal

- doesn’t need an underlying Software Infrastructure (Host OS)
- Kernel which supports HW Infrastructure + Management Interface
- allows controlled distribution of given Infrastructure
- is used by diverse higher level Infrastructure aka Guest OS Systems (like OpenVMS)
Hypervisors Type-1, practical use

- Hardware (X86 most likely)
- 8 Cores
- the Hypervisor
- 1st Virtual Machine (VM)
- 2 Cores assigned
- OS installed
- others to follow
Hypervisor, Type-2 hosted

- needs supporting Software Infrastructure → fully-fledged OS
- does share HW Investment and electrical Power resources
- has to share with other ‘normal’ applications
- is fully dependent on hosting OS
 - Patches
 - Security Updates
 - License prolongations
 - …
Hypervisors Type-2, practical use

- Hardware (X86 most likely)
- 8 Cores
- the Host OS (grabs Cores)
- the Hypervisor (an application)
- 1st Virtual Machine (VM)
- one Cores assigned
- OS installed
- others to follow
Why not for OpenVMS?

- most of the Hypervisors use x86 (AMD64, iE64, x64)
- VMS runs on VAX (CISC), Alpha (RISC) and Integrity (EPIC)
- Hypervisors neither translate nor emulate
- Type-2 Integrity based Hypervisors running on HP-UX (Integrity Virtual Machine)
- most customers want x86
Types of Processors

- CISC ... Complex Instruction Set Computing
 PDP-11 (16bit), VAX (32 bit), x86
- RISC ... Reduced Instruction Set Computing
 • Alpha, MIPS, PA-RISC, Power(PC), SPARC, ARM (64bit)
- EPIC ... Explicit Parallel Instruction Computing
 • Integrity (Itanium) (64bit)
- Hybrids ... CISC to RISC (Emulators ?)
 • x86 starting with Pentium Pro
Emulate

• aemulare…lat.word for 'to imitate'
• System/Software which imitates another System…in some aspects
• Imitation by Transformation
• Emulators transform translated code for
 • different Processors with different 'vocabulary‘
• Emulators are the supporting pillars for bridging
 • different Architectures with different Infrastructures
• transparent to the upper Layers (Operating Systems)
Emulators, types of

- Hardware Emulators
- ICE ... In Circuit Emulator
- Printer Emulator → HP-PCL
- Terminal Emulator
- Processor Emulator
 - Alpha, VAX
 - HP 3000
 - SUN Sparc
Emulators, practical use

- original Hardware
- original Operating System + Apps (OS+)
- new Hardware
- Emulator
- transfer OS (still original)
- discard old Hardware
hypervise \rightarrow emulate \rightarrow translate

- **Hypervisors**
 - divert a given Infrastructure and assign it to upper Layers

- **Emulators**
 - ‘mask’ the underlying Infrastructure

- **Translators**
 - make HighLevelLanguages readable to the Processor
Hypervisor
AVTware

OpenVMS and Tru64 on X86
Desires; to fulfil

- keep OpenVMS based Applications alive
 - highly customized
 - high value
 - Mission Critical
 - Continuity Issue
- reduce Operating Expenses
 - converge Infrastructure
 - reduce space requirements
 - reduce power consumption
 - reduce costs (and complexity) of Hardware Maintenance
Obstacles; to overcome

• no Code Migration, due to
 • Source Code missing
 • Application Vendor doesn’t sell Migration
 • Application Vendor does sell, but is way to expensive
 • still risk of incompatibilities

• Hardware Infrastructure to maintain
 • Storage Arrays
 • TapeDrives
 • FC-Switches to connect to
Expectations to be met

• no software changes
• reliable & secure
• support modern infrastructure
• easy to manage
• performance
Solution; first choice → Bare Metal

- get new Hardware
- get and install Hypervisor
- hook emulated Systems onto
- transfer Systems currently in use
 - copy disk content
- continue with original SW (OS+Apps)
Bare Metal

- Windows
- Linux
- other Hypervisor

{ }

- Alpha/VAX Reliability
- Single Point of Contact

no cost, no maintenance, no sync time delays
Solutions; other Options (Type-2)

- use existing Hardware
- use existing Hypervisor
- install vtServer onto it (one to many)
- create virtual Alphas and VAXes (one to many)
- Install System(s)
- live migration
Solutions; and another one

- use existing Hardware
- use existing Hypervisor
- host other guests
- install vtServer as another guest
- create virtual Alphas and VAXes (one to many)
- Install System(s)
Sizing; CPU

- # Cores
 - virtual CPU = 1,5 Host CPU-cores
- Intel/ AMD
- Generation (Haswell)
- Frequency, the more the better (3GHz+)
- Hyperthreading
Sizing; Memory

per virtual Alpha/VAX:

• Virt. Mem + 25% + 1 GB

\[1024 + (1024 \times 0.25) + 1024 = 2304\]

• safety valve
Infrastructure; Transparency
Infrastructure; Flexibility

SCSI

vtServer

X86

internal

SAS

SATA

SAN

iSCSI

NFS

SMB

external

Mai-16

artedi e.U.
Networking; Options

- **Alpha**
 - DE435
 - DE450
 - DE500
 - DE600

- **VAX**
 - DELQA
 - DEQNA
 - SGEC
 - DEMNA

- **Combining links**
- **VLAN support**
- **Bonding support**
Licensing

• licensed via LicenseKeys
• presented via
 • License Dongles connected to USB Port
 • Network (TCP/IP) Link
• limited Timeframe or perpetual
• redundant License Keys to overcome SPOF
Licensing; distributed
vtAlpha, Licensing

<table>
<thead>
<tr>
<th>Model</th>
<th>vtAlpha-AS</th>
<th>vtAlpha-BS</th>
<th>vtAlpha-CS</th>
<th>vtAlpha-DS</th>
<th>vtAlpha-ES</th>
<th>vtAlpha-GS (Q2/2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlphaStation 200, 250, 255, DEC3000</td>
<td>AlphaServer 300, 400</td>
<td>AlphaServer 800, 1000</td>
<td>AlphaStation 500, 600, DPW, XP900, XP1000</td>
<td>AlphaServer 2000, 2100</td>
<td>AlphaServer 4000, 4100</td>
<td>AlphaServer DS10, DS15</td>
</tr>
<tr>
<td>AlphaServer 2000, 2100</td>
<td>AlphaServer 4000, 4100</td>
<td>AlphaServer DS10, DS15</td>
<td>AlphaServer DS20, DS25</td>
<td>AlphaServer DS10, DS15</td>
<td>AlphaServer DS20, DS25</td>
<td>AlphaServer 1200</td>
</tr>
<tr>
<td>AlphaServer GS80, GS160, GS320</td>
</tr>
<tr>
<td>AlphaServer 2000, 2100</td>
<td>AlphaServer 4000, 4100</td>
<td>AlphaServer DS10, DS15</td>
<td>AlphaServer DS20, DS25</td>
<td>AlphaServer DS10, DS15</td>
<td>AlphaServer DS20, DS25</td>
<td>AlphaServer 1200</td>
</tr>
</tbody>
</table>
vtVAX, Licensing

<table>
<thead>
<tr>
<th>Model</th>
<th>Licensing Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAXstation II, GPX, 2000, VAXserver 3600/3900</td>
<td>vtVAXstation</td>
</tr>
</tbody>
</table>
| MicroVAX II, 2000
MicroVAX 3100 - 3900
VAX 4000 | vtVAX-128 (+ AC) |
| MicroVAX 3100
VAX 4000
VAX 6000 | vtVAX-256 (+ AC) |
| MicroVAX 3100
VAX 4000
VAX 6000 | vtVAX-512 (+ AC) |
| VAX 6000 1 – 6 CPU, up to 3.5 GB memory
VAX 7000 1 – 6 CPU, up to 3.5 GB memory | vtVAX-7000 |
Life Demo

vtAlpha
OVMS 7.3-2

Virtual Switch

vtAlpha
OVMS 8.4-2

ds25

artedi e.U.
still beats
Sieve of Eratosthenes

1 2 3 4 5 6 7 8 9 10